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Abstract--This study investigates a vertical plate fin cooled by an oncoming turbulent flow. The base 
temperature of the fin varies periodically and the local heat transfer coefficient of the fin surface is 
determined by a conjugate convection-conduction analysis rather than arbitrarily specified. The heat 
conduction problem within the fin coupled with the boundary layer flow problem outside the fin surface 
are solved simultaneously. The calculated results include the effects of the conjugate convection-conduction 
parameter Nc as well as the oscillation amplitude and frequency of the base temperature on the fin cooling 

behavior. 

INTRODUCTION ANALYSIS 

In the fin cooling analysis, the convective heat trans- 
fer coefficient of the fin surface is usually specified. 
Sparrow and Acharya [1] analyzed this kind of prob- 
lem by simultaneously solving the conduction equa- 
tion in the fin and the natural convective heat transfer 
for the cooling fluid and named the analysis the con- 
jugate convection-conduction problem. Later, Spar- 
row and Chyu [2] made a similar analysis with cooling 
fluid changed from natural convection cooling to 
laminar forced convection cooling. Lien et al. [3] 
extended the analysis for a vertical fin cooled by a 
turbulent flow. 

All of the above-mentioned studies considered the 
fin cooling as a steady-state heat transfer problem. 
However, in many practical fields, such as internal 
combustion engines, some special electronic com- 
ponents and machining processes, the heat generation 
is periodic instead of steady state. The base tem- 
perature of the fin is thus more likely to be a periodic 
oscillation rather than constant. 

In this study, a conjugate convection-conduction 
analysis is performed for a vertical plate fin which is 
cooled by a turbulent forced---convection boundary 
layer flow. The base temperature of the fin is assumed 
to oscillate around a mean value. 

tAuthor to whom correspondence should be addressed. 

Consider a vertical plate fin with its base tem- 
perature Tb oscillating around a mean temperature 
Tin, which is greater than the ambient temperature T~, 
i.e. 

Tb = T m + A ( T m - - T ~ ) c o s o g t  A < 1 (1) 

where A is the dimensionless amplitude, o~ is the fre- 
quency of oscillation, the oncoming fluid has the vel- 
ocity of U~, and the boundary layer will be developed 
along the plate fin surface, see Fig. 1. 

The governing equations for the flow are 

~u ~v 
~xx + ~yy = 0 (2) 

8u 8u O F 8u3 

with the boundary conditions 

u = v = O  T =  Tw(x,t) a t y = 0  (5a) 

u ~ u ~  T~To~ a s y ~ o o  (5b) 

where x and y denote the streamwise and normal 
coordinates, respectively, and u and v are the associ- 
ated velocity components. T is the fluid temperature, 
t is the time, v and e,~ are the laminar and turbulent 
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NOMENCLATURE 

A amplitude of fin base temperature 
A, amplitude of fin surface temperature 
D damping length constant 

f dimensionless stream function 
h local heat transfer coefficient 
h* dimensionless local heat transfer 

coefficient 
k fluid thermal conductivity 
k~ fin thermal conductivity 
L fin length 
N, a parameter defined by N, = U~L/a f  
Nc  conjugate convection-conduction 

parameter 
Pr Prandtl number 
q local surface heat flux 
q* dimensionless local heat flux 
Q overall heat transfer rate 
Q* dimensionless overall heat transfer 

rate 
Re Reynolds number, U ~.L/v 
t time 
T temperature 
u velocity in the x-direction 
U~ free stream velocity 
v velocity in the y-direction 

streamwise coordinate 
cross-stream coordinate. 

Greek symbols 
thermal diffusivity of fluid 

~f thermal diffusivity of fin 
6 fin half thickness 
6, thermal boundary layer thickness 
~'m eddy viscosity 
~h eddy diffusivity of heat 

pseudo-similarity variable 
0 dimensionless temperature 
v kinematic viscosity of fluid 

dimensionless streamwise coordinate 
r dimensionless time 
¢ phase lag of fin temperature 
~o angular frequency 
o~* dimensionless angular frequency. 

Subscripts 
b quantities at the fin base 
f quantities associated with the fin 
tr condition in the transition region 
w condition at the wall 
oo quantities away from the wall. 

kinematic viscosities, and ~ and eh are the laminar and 
turbulent thermal diffusivities. 

The energy equation in the fin is assumed to be one- 
dimensional, i.e. the temperature difference in the y- 
direction is neglected because the Biot number of a 

Tbf f iTm+A(Tm-T . )  cos ~ 

--* 2 8 , , - -  

X 

---~y 

~ dT_~f =0 

Ttttt 

Fig. 1. Physical model and coordinate system. 

thin fin is usually smaller than unity [4-6], and can be 
written as 

a 2 Tf h(x, t) 1 OTf 
(Tf-- T~) - (6) 

~x 2 krJ o~f c3t 

with the boundary conditions 

Tr = T m + A ( T m - T ~ . ) c o s c o t  atx = L (7a) 

aT,- 
0x 0 a t x = 0  (7b) 

where Tf is the fin temperature, kf is the fin thermal 
conductivity and h(x, t) is the instantaneous local heat 
transfer coefficient. The coupling conditions come 
from the requirements that temperature and heat flux 
at the fin-fluid interface must be continuous, i.e. 

Tf(x, t) = Tw(x, t) aty = 0 (8a) 

- k  ?~T = h ( x , t ) ( T f - T . ~ )  a t y = 0 .  (8b) 
c3y ~=0 

By introducing the dimensionless variables of 

= x / L  , = (y /L) (Re /~)  °5 ~ = ~d /L  (9) 

f ( ~ , ~ , ~ )  = O ( x , y , t ) / ( U ~ x v )  °5 (lO) 

0(~,q,v) = [ T ( x , y , t ) - T . ~ ] / ( T m - T ~ . )  (11) 

0f(¢, r) = [Tf(x, t ) -  T~o]/(Tm - T~)  (12) 

equations (1)-(8) can be rewritten as follows : 
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for flow field : 

63 1 z 

d. j 63. \N o. de: 

d 1 )O~lJ drl 
~[(~ + , a o 7  , dO 

~-e h _--/+ ~f-- 

. / d f  dO dO df  1 dO) -q,N  
with boundary conditions 

f =  O~= 0 0 = 0w(~,z) 

df 
- - =  1 0 = 0  a s r / ~ c ~  aq 

for fin : 

a t r / =  0 

(13) 

(14) 

(15a) 

(15b) 

O 2 Of d0f  
d- ~ - Nc h * (~) Of - 63z (16) 

with boundary conditions 

d0f 
- 0  at~ = 0 (17a) 04 

0 f = I + A c o s ~ * z  a t ~ = l  (17b) 

conditions at the interface : 

0f(~,z) = 0w(~,z) a t r / =  0 (18a) 

d0 
h*Of~/~ = Or/ a t r / =  0. (18b) 

In equation (9), Re is defined as U~L/v, a free stream 
Reynolds number, in equation (10) ~(x ,y ,  t) is the 
stream function with d~b / dy = u and c'~qs / dx = - v. The 
parameter N, in equation (14) equals UooL/ctf, and co* 
in equation (17b) is the dimensionless angular fre- 
quency defined as ~o* = coL:/ctf. In equation (16), the 
dimensionless parameters Nc and h* are defined, 
respectively, as 

Nc = (kL(x/Re)/kf6) (19) 

h*(~) = - O~ (4, 0)/[(x/O0f(~)]. (20) 

To complete the formulation for this problem, 
initial conditions at ~ = 0 for the z-r/ plane and at 
z = 0 for the @r/plane must be specified. Since the 
problem is quasi-steady (periodic), the initial con- 
ditions are virtually arbitrary. In order to reduce the 
iteration times, the initial conditions at ~ = 0 are given 
by the steady-state conditions, i.e. 

(21) 

d 1 d0 

e,7 

(22) 

020f 
- -  -Nch*(~)Of  = 0 (23) 
O~ 2 

and the initial conditions at ~ = 0 are given by setting 
= 0 and e + = eft = 0 in equations (13) and (14), i.e. 

oaf + = 0 (24) 
Or/3 

1 020 i dO 
= 0 ( 2 5 )  

Pr 

This means the flow is laminar at the leading edge of 
the fin (at ~ = 0). 

Eddy viscosity and eddy diffusivity 
In the modeling of turbulence eddies, Cebeci and 

Smith's algebraic model (C-S model) [7] is adopted 
here, because this model is not only simple to use, 
but also very effective for the boundary layer flow 
considered in this study. According to the formulation 
of the C-S model, the turbulent boundary layer con- 
sists of inner and outer regions with separate 
expressions for eddy viscosity in each region. In the 
inner region the formulation is expressed as 

21Oul 
(gm)i = l ~yy ~tr @:m)i ~< (~:m)o (26)  

where l is the mixing length and is defined as 

l --- 0.4y[1 - e x p  (--y/D)] (27) 

where D is a damping length constant, D = 
26V(Zw/p) °'5. 

The parameter 7tr in equation (26) is an inter- 
mittency factor, which accounts for the transition 
between laminar and turbulent flows. ~tr is shown as 

f ' d x  (28) Y,r = 1--exp[--G(x--x tr )  U~o 
• 1 x t r  

where xtr is the location of the starting point of tran- 
sition, and the empirical factor G is given by 

1 G 3 2 - 1,34 = ~ (U~/v)Rex, ,  . (29) 

In the outer region, the eddy viscosity is expressed as 

I i  ~ dy '~tr (~m)o = 0.0168 (U~ - -  U )  (Ern)o ~-~ (~rn)i. 

(30) 

The eddy diffusivity is obtained from the turbulent 
Prandtl number reported by Jischa and Rieke [8], 
which is 
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Pr~ = - -  = a+b(Pr + l)/Pr 
I"h 

where a = 0.825 and b = 0.0309 for air. 

Qb 2 OOr 
(31) Q * = k ( T m - T ~ ) R e  °s - N c  ~ ~:, (33) 

Numerical procedure 
The solution procedure starts with a guessed fin 

temperature of  0r(~) = cosh [~(1 + A)]/cosh (I.0) at 
= 0. The boundary layer equations, equation (21) 

and (22), are solved by marching along the ~-direc- 
tion. The local heat transfer coefficient h*(¢, 0) can 
then be determined from equation (20) after the flow 
solution is obtained. The calculated h*(¢, 0) is in turn 
used as input to calculate the new heat conduction 
equation, equation (22). A newly obtained 0r(~) is 
again imposed as the new boundary condition to 
repeat the calculations for flow equations. This alter- 
native solution procedure will continue until h* con- 
verges. 

Once the solution at r = 0 is obtained, the time 
domain will march forward. At the new time, the 
same solution procedure will be applied for the flow 
equations [equations (13) and (14)] and for the fin 
equation [equation (16)]. The time marching will con- 
tinue until a complete oscillation cycle is reached. In 
this study, a complete cycle is divided into 40 time 
intervals. 

The calculated fin temperatures at each time inter- 
val are compared with the corresponding values 
obtained in the previous cycle. The solutions are 
finally determined whenever the maximum difference 
of  fin temperatures is less than a given small value 
(say 10 4). An implicit finite-difference method, 
namely the Keller's box method [9], was employed to 
perform the numerical simulation. To conserve space, 
the details of  the solution procedure are not rep- 
resented here. 

RESULTS AND DISCUSSION 

In carrying out the calculation, the following physi- 
cal quantities are used : Pr = 0.7, v = 1.684 x 10 5 m _~ 
s ', L = 0 . 0 8  m, U, = 150 m s ' and 
Re~,, = 400000, such that ~ = 0.56 and N~ = 106 
819. The periodic heat transfer characteristics of  the 
vertical plate fin are discussed as follows. 

Instantaneous overall rate (?/heat trans[br 
In the steady-state analysis, the overall heat transfer 

rate from the fin can be obtained from the solution 
either by integrating the local convective flux at the 
fin surface, denoted by Q, or from the heat conducted 
from the fin base (at ~ = 1), denoted by Qb, For the 
unsteady case, Q is usually not equivalent to Qb due 
to the existence of  the heat capacity of  fin. The dimen- 
sionless forms of  Q and Qb can be expressed as 

Q* - Q = 2 [ "  1 ~0 
k(Tm_ T~)ReO.S ~, ~o5 ~q "::° d~ 

(32) 

and 

Figure 2 shows the calculated instantaneous Q* 
and Q*. Both Q* and Q* oscillate around the same 
mean value, which is essentially the heat transfer rate 
of  steady-state cooling. Figure 2 also reveals there is 
a discordance between Q* and Q*. The existence of  a 
discordance implies that the fin mass is either absorb- 
ing or releasing energy. Comparing Fig. 2(a) and (b), 
it is found that the increase of  m* enlarges the oscil- 
lation amplitude of  Q* and decreases that of  Q* ; the 
discordance between Q* and Q* is thus more obvious. 

The effect of  the parameter Ne is shown in Fig. 3, 
which indicates that the mean values (dotted lines) are 
greatly affected by Nc. The mean heat flux increases as 
Nc decreases. A low Nc means the conductivity of  fin 
is large, which implies the heat transfer resistance of  
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Fig. 2. Instantaneous overall heat transfer rate. Nc = 0.5, 
A =0.5:  (1) Q*: (2) Q*; (3) mean value. (a) ~,o* =0.5:  

(b) ~* = 5.0. 
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(1)No •0.5,Affi0 (4) Nc = 2.0,Affi 0.I 
(2) N¢ •0.5,A= 0.I (5) Nc ffi 6.0,A= 0 
3) Nc ffi2.0,A=0 (6) Nc = 6.0, Affi 0.I 
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Fig. 3. The effect of Ne on Q* and Q~', co* = 0.5. (a) Q* ; 
(b) Q*. 

the fin is small and the overall heat flux is thus larger 
and the amplitude of  Q* oscillation is also bigger. 

F rom the definition N 1 = UooL/ar = (~/~xf)Pr Re, 
both Pr and a/~tf~ O(l ) ,  but  Re>> 1, therefore 
Nt >> I. F r o m  the flow equations [equations (13) and 
(14)], it can be seen that the variation of  N] hardly 
affects the boundary layer solution. The physical 
meaning of  this result is that the heating time of  the 
boundary layer is much less than the heating time of  
the fin. The heating time of  the boundary layer is of  
the order of  6t2/~, where 6t is the thermal boundary 
layer thickness, while the heating time of  the fin is of  
the order of  L2/af. The ratio of  the former to the latter 
is o f  the order of  1/N1. 

Instantaneous local heat f l u x  
The dimensionless local heat transfer flux is ex- 

pressed as 

qL  O0 
q*(~' z) -- k(Tm - T~.)Re °5 - Otl (¢' O, z)/x/~. 

(34) 

Figure 4 reveals that q* also varies periodically. As 
increases, q* decreases initially (compare curve 2 with 
curve 4) due to the increase of  boundary layer thick- 
ness, but q* will then increase substantially (see curves 
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Fig. 4. The variation of q* at different ¢ and 09* (Nc = 0.5). 
(a) o~* = 0.5 ; (b) oJ* = 5.0. 
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6 and 8) due to the change of  flow from laminar to 
turbulent. Once the flow becomes turbulent the local 
heat flux may increase slightly with 3; because the 
local Reynolds number increases with ~_, the turbulent 
eddies of  flow may also increase to promote the local 
heat transfer coefficient. Comparing Fig. 4(a) and (b), 
it is found that the variation of  q* at different location 
(~) increases when ~o* increases. 

Surfitce temperature q/i[in 
The local surface temperature can be expressed by 

Of(~,r) = O~(~)+A, cos (~oz-~b) (35) 

where 0~(~) is the steady-state distribution and ~b is the 
phase lag behind the base temperature. As expected, 0~ 
and A~/A gradually decrease, see Fig. 5, while ~b 
gradually increases, see Fig. 6, as ~ approaches 0 
(towards the fin tip). The above-mentioned behavior 
will be enhanced when Nc is smaller or when ~o* is 

larger. These results are consistent with the effects of  
Nc and o?* on Q* and q*. 

CONCLUSION 

A numerical method has been developed to analyze 
a conjugate convect ion-conduct ion problem. Besides 
the turbulent effects, the effects due to the variations 
of  Nc, A and ~o* on the heat transfer rate and fin 
temperature are also important,  

Generally, the overall heat flux through the fin will 
increase as Nc decreases, and the variations of  local 
heat flux and fin temperature become larger when Nc 
is small or when o9" and A are large. The parameter 
N~ is shown to have no significance on heat transfer 
results. When the value ofo9* is small, the A/A1 curve 
is close to the 0~ curve and 4) becomes small. 
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